

Campanile-Carillon Model: Phase II

Final Report - 12/10/19

sddec19-12

Client: Dr. Tin-Shi Tam
Advisor: Gary Tuttle

Gabriel Stackhouse - Software Lead
Grant Mullen - Integration Manager

Kienan Otto - Report Manager
Ryan Roltgen - Meeting Scribe
Sam Habel - Meeting Facilitator

Yicheng Hao - Power Systems Lead

Email: sddec19-12@iastate.edu
Website: http://sddec19-12.sd.ece.iastate.edu/

mailto:sddec19-12@iastate.edu
http://sddec19-12.sd.ece.iastate.edu/

Terms & Definitions 4

Software Design 5
Overview 5
Libraries 5

SFML 5
Midifile 5
FastLED 5

GameStates 6
MenuState, SongSelectionState, and DifficultyState 6
PlayState 6

Loading External Files 7
Source File Class Definitions 7

GameState 7
KeySprite 7
Note 7
VerticalBarSprite 7
ResourceManager 8
Serial 8
Timer 8

Hardware Design 8
LED Bar 8
Battery 9

Implementation Details 9
Software and Hardware Integration 9
Port from Linux to Windows 9
Project Obstacles 9

Testing Process & Results 10
Process 10
Results 10

Related Products and Literature 11
Products 11
Literature 11

Appendix I - Operation Manual 11
Project Laptop Credentials 11

2

Initial Setup 11
Each Use Setup 11
How to add MIDI or MID files 12
Running the Program 12
Compiling from Source 13

Appendix II - Alternative Versions 13
Linux Version 13

Appendix III - Future Plans/Other Considerations 14
PDF Sheet Music Viewing 14

List of Figures
Figure 1: LED bar 8
Figure 2: Main Menu / MenuStater 12
Figure 3: DifficultyState 13
Figure 4: PlayState 13

3

Terms & Definitions
Arduino: A microcontroller that is widely used for interacting with digital devices

C++: A general-purpose programming language. It has imperative, object-oriented and generic
programming features, while also providing facilities for low-level memory manipulation

Git: A version-control system for tracking changes in computer files and coordinating work on
those files among multiple people. It is primarily used for source-code management

GitLab: A web-based Git-repository manager that is used at Iowa State

GPIO: General-Purpose-Input-Output

I/O: Input/Output - Usually related to user input (keyboard and mouse) and graphical output
(screen)

LED: Light-Emitting-Diode - A light source

LED/Light Bar: The bar that is below the monitor which has LEDs that light up when notes
reach the bottom of the screen

Linux: An open-source lightweight operating system

MIDI: Musical-Instrument-Digital-Interface - A file type that represents digital music

Power Inverter: A device that converts DC power into AC power necessary for electronic
components. 12VDC to 120 VAC

PSU: Power-Supply-Unit - Entails all components necessary to supply power

Repository (Git): A repository is a collection of files that are managed by Git

SFML: Simple-and-Fast-Multimedia-Library - C++ library that “provides a simple interface to the
various components of your PC”

USB: Universal-Serial-Bus - An industry-standard cable connection type

Visual Studio: Software created by Microsoft that allows for the creation of programs in C++

4

Software Design

Overview
The software for this project was written entirely in C++. The language was chosen because the
previous group laid the groundwork for the program in C++, making it easy for us to extend. C++
is great for a project like this because it’s able to produce efficient code and interact with the
hardware of the entire system much easier than other languages. The SFML library was also
used to generate the graphics, which is much more intuitive and faster than if we tried to
generate them manually.

Another C++ library, aptly named MidiFile, was used to convert MIDI files into a C++ data
structure. This allows the program to read the music and know when and where to add the
falling notes for each song.

The final piece was the computer the Arduino connection. C++ made it easier to communicate
with the hardware by opening a serial port and talking directly to the Arduino, which in-turn
communicates with the LED lights. Since the Arduino uses C natively and the serial connection
is done entirely through C libraries, C++ made this all very intuitive to implement.

Libraries
Below are the requirements to build the project’s source code from scratch. All libraries should
be built and installed on the computer that is running the program. This step is about where to
find and download the required files. Anything regarding installation will be covered in the next
section.

SFML
The SFML library is used to draw the graphics to the screen. For our project we use SFML 2.5.1
for Windows. We have an installation script to help install the needed libraries to the proper
location to the computer.

Midifile
MidiFile is a C++ library that handles reading MIDI files, a file format that represents music
digitally. The library converts MIDI files provided by the end-user to a data structure readable by
C++ code. MidiFile is maintained by Craig Sapp in his GitHub repository.

FastLED
FastLED is a C library for the Arduino Uno that allows for easily controlling LEDs on various
chipsets. In our case, this was used to emit the LED lights in the light bar at the correct times

5

https://github.com/craigsapp
https://github.com/craigsapp/midifile

and colors to correspond with the falling notes on the screen above. FastLED is publicly
maintained on the Github repository.

GameStates
The game is split up into different states represented by a class named GameState. Each
GameState can handle a specific set of actions. There can only be one active GameState at a
time, but the game can switch between GameStates based on the actions that can be taken.
The game will run indefinitely, so long as the active GameState tells the game which
GameState to go to next.

MenuState, SongSelectionState, and DifficultyState
There are three menus that are in the game currently: MenuState, SongSelectionState, and
DifficultyState. Each one gives a list of options that the user can select and when selecting an
option it will perform an action.

For example, if on the main menu, one selects the “Exit” option, the game will exit. Instead,
pressing the “Play” option the MenuState will tell the program to make the SongSelectionState
active. On the song selection menu, a song can be selected which will make the DifficultyState
active. The difficulty state lets users select how fast they’d want the song to play, and the song
starts immediately upon selecting this.

Navigation for these menus works with the arrow keys and the Enter button. The Escape button
can be used to go back a menu if you selected something wrong. Controls function similarly
with an external remote.

PlayState
PlayState is where the musical notes are shown on screen. The track is played back to the user
while the notes “fall” towards the bottom of the screen. When the notes touch the bottom of the
screen, two things happen:

● That note is marked as active
● A pulse is sent out via serial connection to alert the connected Arduino that a note

change has occurred
When PlayState is first initialized:

● PlayState’s internal Timer is reset. The timer necessary to keep track of how much time
has passed while the song is playing, which is needed to update the note’s graphical
position

● The active song’s MIDI file is read into memory
● Every note is iterated over, and a note is generated at the specific time offset to

represent that MIDI note in the song
● Every note is then set as inactive

6

https://github.com/FastLED/FastLED

While PlayState is running, each frame calculates how much time has passed since the
previous frame. The difference in time is what is used to update the notes’ positions. This
“delta-time” ensures that the framerate of the computer won’t alter the positions of the notes.

The way active notes are determined is based off of the note’s position. For each note, if the
note is within the bounds of the bottom of the screen then the note is considered active. If a note
is active then that note will be lit up on the LED bar. This happens for all 27 notes in the song.

Loading External Files
Since the project needed to support the ability to play any music, the program automatically
checks a directory for the existence of MIDI files. Those MIDI files are listed in the
SongSelectionState and when selected the MidiFile library reads the data for the program to
use.

All file I/O is handled by the ResourceManager class. Its main function is to reread those
directories and repopulate the list of available MIDI files to play.

Source File Class Definitions

GameState
For all GameState-related information, refer to the previous section.

KeySprite
KeySprite inherits from two SFML base classes - sf::Drawable and sf::Transformable. It is
essentially a sprite that generates a rectangular entity representing a key that appears on the
screen. The key will change color, location, and size depending on these factors:

● Whether or not the key is a natural note or a sharp (white key or black key)
● The millisecond offset at which the note is first played
● The duration of the note

Note
A Note acts as an intermediary between MIDI file notes and KeySprite objects. When the MIDI
file is parsed during the initialization of PlayState, a Note object is generated for each MIDI note,
and then based on the MIDI data parsed into that Note, a KeySprite is generated. This also
takes into account notes that fall outside the initial range of 27 keys that are available on the
carillon.

VerticalBarSprite
The VerticalBarSprite is a background of vertical stripes that allow the user to see the spacing of
the notes and line up the notes with the real-life instrument more accurately. On top of that,
these stripes help differentiate the natural notes from sharps and flats because sharps/flats will

7

be on the line while the natural notes will be between two lines. This provides more usability for
people that are colorblind and can’t easily tell the difference between yellow and red.

ResourceManager
As mentioned previously, ResourceManager’s main purpose is to populate the list of available
MIDI files in pre-configured directories. It will also handle the creation of directories for those
files if they do not exist.

Serial
Serial is used for serial connection I/O. Its main purpose is to send data from the main program
to the Arduino connected via USB serial cable. It contains mostly standard C code instead of
C++, as low-level file descriptor interaction (which serial connection is) works best in C. Serial is
used within PlayState to send active note updates to the Arduino which in turn updates the
lights.

Timer
Timer is used within the PlayState class to keep track of how much time has passed during the
execution of the song. The main benefit that the Timer class provides over SFML’s built-in Clock
class is the ability to pause time and start it again, which Clock doesn’t allow. That being said,
Timer is essentially a wrapper around Clock that extends its functionality to provide the
pause/start effect.

Hardware Design

LED Bar

Figure 1: LED bar

The LED bar replaces a decorative crossbeam on the structure. The embedded LEDs line up
with the falling notes on screen and will light up for each note’s duration. The LEDs sit on one of
three custom PCB designs with three, five, and seven LEDs each. There are five boards
currently being used inside the beam to match the pattern of holes in the beam and batons on
the carillon.

The boards are controlled by an Arduino Uno which receives commands over a serial
connection with the main program. The power for the Arduino and the five LED boards also
comes from this connection to the main system.

8

Battery
The best solution for a battery is to buy an off-the-shelf system. This allows for easy
replacement in the event of failure or battery degradation. Additionally, this will provide for
long-term support as opposed to a student-designed solution. There were multiple
recommendations made for the battery.

For a single long-life battery system, the Sungzu Portable Power Station 1000W system is
recommended. With the recommended PC, monitor, and peripherals there is an estimated
battery life of six hours. For shorter battery life, the Sungzu 500W Portable Generator Power
Station is recommended. This provides an estimated 3 hours of runtime. Ideally, multiple
batteries at this smaller capacity would be purchased. This would cut down on the required
space inside the structure for a battery. However, this would require the system to be powered
down when swapping batteries. This multi-battery concept could be used in any combination to
achieve the desired battery life.

Implementation Details

Software and Hardware Integration
The program is being run in Windows 10 and is developed in C++. The program uses multiple
libraries to perform important data conversions, including creating usable data out of MIDI files.
The information includes note and duration for each note in the song. When the note is at the
bottom of the screen (indicating it should be played at this time), a signal is sent via serial
connection to the Arduino Uno controlling the LED bar. The Uno then sends the activation signal
to the specific LED. When the note leaves the screen (indicating it no longer needs to be
played), the Uno receives a signal to deactivate the specific LED and does so immediately.

Port from Linux to Windows
The program was originally developed for a Raspberry Pi running Raspbian, a Linux distro. The
program was functional in this state but the hardware was not adequate performance-wise. The
team made the decision to port the program from Linux to Windows to make it easier for future
users and owners to navigate and modify. The original version on Linux was developed in C++,
making the conversion simple. The biggest changes were in the libraries being used and the
IDE being used to develop the software. This also enables easier system replacement in the
future, as the installation process on a brand new system can be scripted and run easily by
anyone familiar with Windows OS.

Project Obstacles
Our original project plan made assumptions about the timeline of receiving necessary
components that were not correct. The plan was to get the monitor at the end of March 2019

9

and continue developing the program in Linux until our deadline of October 2019. In April 2019,
the monitor had not arrived and we were given a new task of porting the program from Linux to
Windows. This shifted priorities away from the planned feature developments. After successfully
porting the program, the monitor arrived October 2019. The testing period was cut short due to
the late acquisition of the monitor. In addition, the previous group did not provide the source
code for the Arduino that controlled the LED light bar. The team was forced to find the software
library that was used with the LEDs and recreate the source code from scratch.

Testing Process & Results

Process
The LED bar and main program were tested together, as the LED bar’s functionality is
dependent on the on-screen notes. The tests occurred after each major iteration, structural
change, or optimization made to the program. There were multiple tests run on the program:

1. Continuous operation for one hour
2. Long duration midi files
3. High note count midi files

The LED bar was tested by watching how closely it aligned with the displayed notes using the
same tests as the program.

Results
The program successfully passes each of these tests in the current version.

1. The test can run any number of songs for any amount of time without having failures due
to the program’s runtime.

2. Longer songs do not lead to lowered performance or failures.
3. Notes are being only temporarily drawn and stored in memory, so a high number of

notes does not lead to lowered performance or any related issues.

The LED bar passes the tests as well.

1. The Arduino and LED bar do not lose functionality after extended use. The test was
mainly focused on discovering memory issues with the Arduino.

2. The Arduino and LED bar do not become overwhelmed after being used nonstop for
individual long duration songs. This test also addressed memory issues.

3. The system continues functioning even when multiple notes are overlapping and
changing quickly. This was to test the responsiveness to a change in active notes.

10

Related Products and Literature

Products
The styling of the interactive guide itself has been used in multiple games and programs
already. The most popular of these games is Guitar Hero, but other common variations are
found in Rock Band and Synthesia, a piano themed instructional guide. Our guide is most
similar in functionality and design to Synthesia, but specialized for a 27-key carillon and
extended to interact with our LED bar.

Literature
This project started about 3.5 years ago as a capstone project for mechanical engineering
students. The goal to create a mobile carillon that can be easily accessible by people who don’t
have the ability to make it to the top of the campanile. The project is overseen by Dr. Tin-Shi
Tam and the Student Carillonneur Leadership Council.

In Spring 2018 the first ECpE team was assigned to start work on a way for users to be able to
play popular ISU songs despite how much musical knowledge they have. Over the year, they
were able to get a small working prototype that we have refined and added to over our time on
the project. They also helped construct the lightbar and make the code for the arduino which
controls when the lights are lit up.

Appendix I - Operation Manual

Project Laptop Credentials
Username: user
Password: carillon

Initial Setup
1. Run the carillon installer, found on the Releases page of the project repository

Each Use Setup
1. Connect the HDMI cable between the monitor and the laptop
2. Double check that the MIDI files are in the proper folder (look at “How to add MIDI or

MID files)
3. Check that the SFML-2.5.1 folder is in the C: drive

11

How to add MIDI or MID files
1. Go to C:\Users\<username>\Documents\CampanileCarillon\midi on the computer

and drag any midi files you want into the folder
2. Start or restart the program to reload the song list

Running the Program
1. Double-click the executable. Program should load into the main menu

Figure 2: Main Menu / MenuStater

2. Use the up/down arrow keys for movement and enter to make the selection
a. Selection is in yellow

3. Escape can be used to go back a menu and to leave a song that is currently playing
4. To play a song, select Play from the main menu

a. Choose the song you want to play
b. Choose the tempo you want to play at

i. Adagio (Easy) = 50% speed
ii. Andante (Medium) = 75% speed
iii. Allegro (Hard) = 100% speed
iv. Presto (Advanced) = 125% speed

12

Figure 3: DifficultyState

c. Play through the song, or you can leave anytime with the Escape key
5. To leave the program select Exit from the main menu

Figure 4: PlayState

Compiling from Source
1. Install Visual Studio 2017 or newer onto your computer
2. Clone the git repository for the project. Link is earlier in this report
3. Launch the .sln file for the program
4. Changes can be made and recompiled as needed

Appendix II - Alternative Versions

Linux Version
● When starting this project the program was already in Linux and we worked on the

program for about 3 months, fixing bugs before our client showed interest for the
program to run on MacOS or Windows.

13

Appendix III - Future Plans/Other Considerations

PDF Sheet Music Viewing
We have been working to view PDF sheet music within the program to allow musicians to use
our program effectively instead of having to follow the screen. Most of our work for this feature
has been working towards having a way to turn PDFs into a format that SFML can use and
display. Due to not having the final system in our possession, the feature was not fully
implemented

The conversion from PDF to bitmap to on-screen sprite requires the following programs and
libraries to function:

1. Google
a. Depot_tools: A set of extensions to allow automatic updating of Google’s tools

and development of Chromium-based software.
b. PDFium: The program written in C++ used to display PDFs on Chrome and

Chromium.
2. Apache

a. Subversion: Similar to git, and used to track changes in code and keep the
current codebase up-to-date.

3. Microsoft
a. Debugging Tools for Windows: Feature from the Windows 10 Software

Development Kit to aid in Windows development.
4. Standalone

a. Ninja: Developed by Evan Martin, it is a software building tool.
b. Python: Designed by Guido van Rossum, Python is a scripting language.
c. Git: git is a version control system created by Linus Torvalds.

PDFium is the core of the feature, as it is responsible for rendering the PDF to a bitmap. After a
PDF is processed, there will be one image per page of the PDF, and the name follows the
scheme of the original PDF followed by a number indicating order. Our program would then be
responsible for taking the bitmap and rendering it as a sprite, which is the format SFML uses for
shapes and images. It could be implemented similarly to the normal SelectionState but the
PlayState would require a new format.

14

